Abstract

Exchange rate is the currency value of a country that is expressed by the value of another country's currency. Changes in exchange rates indicate risks or uncertainties that would return obtained by investors. With the predicted value of return, investors can make informed decisions when to sell or buy foreign currency to gain an advantage. Forecasting of return values can be using artificial neural network with backpropagation. In backpropagation procedure, data is divided into two pairs, namely training data for training process and testing data for testing process. In the training process, the network is trained to minimize the MSE. One of optimization method that can minimize the MSE is one step secant backpropagation. In this research, the data used is the return of the exchange rate of rupiah against US dollar in the period of January 1 st , 2015 until December 31 st , 2015. The results were obtained architecture best model neural network that was built from 8 neurons in the hidden layer, 1 unit of input layer with input x t-1 and 1 unit of output layer. The activation function used in the hidden layer and output layer are bipolar sigmoid and linear, respectively. The architecture chosen based on the smallest MSE of testing data is 0.0014. After obtaining the best model, data is foreseen in the period of November 2016 produce MAPE=153.23%. Keyword : Artificial Neural Network, Backpropagation, One Step Secant, Time Series, Exchange Rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.