Abstract
Investing in gold is a flexible choice because it can be sold at any time and used as an emergency fund. Investors should have the knowledge to predict data from time to time to achieve investment goals. One of the statistical methods for time series data modeling is ARIMA. The ARIMA model is strict with the assumptions that the data must be stationary, the residuals must be normally distributed, independent, and with constant variance, so an alternative model is proposed, namely nonparametric regression model, which has no modeling assumptions requirement. In this study, the daily world gold price data will be modeled using a local polynomial nonparametric model as an alternative because the assumptions in the ARIMA are not fulfilled. The data is divided into 2 parts, namely in sample data from January 2, 2020 to November 30, 2020 to form a model and out sample data from December 1, 2020 to December 31, 2020 used for evauation of model performance based on MAPE values. The chosen best model is the local polynomial model with Gaussian kernel function of degree 5, bandwidth of 373, and local point of 1744 with an MSE value of 482.6420. The local polynomial model out sample data MAPE value is 0.61%, indicating that the model has excellent forecasting capability. In this study, Graphical User Interface (GUI) using R software with the help of shiny package is also built, making data analyzing easier and generating more interactive display output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.