Abstract
Time series data is a type of data that is often used to estimate future values. Long memory phenomenon often occurs in time series data. Long memory is a condition that shows a strong correlation between observations even though they are quite far away. This phenomenon can be overcome by modeling time series data using the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. This model is characterized by a fractional difference value. ARFIMA (Autoregressive Fractional Integrated Moving Average) model assumes that the residuals are normally distributed, mutually independent, and homogeneous. However, usually in financial data, the residual variants are not constant. This can be overcome by modeling variants. Standard equipment that can be used to model variants is the ARCH / GARCH (Auto Regressive Conditional Heteroscedasticity / Generalized Auto Regressive Conditional Heteroscedasticity) model. Another phenomenon that often occurs in GARCH models is the leverage effect on the residuals of the model. EGARCH (Exponential General Auto Regessive Conditional Heteroscedasticity) is a development of the GARCH model that is appropriate for data that has an leverage effect. The implementation of this model is by modeling financial data, so this study takes 136 monthly data on rice prices in Semarang City from January 2009 to April 2020. The purpose of this study is to create a long memory data forecasting model using the Exponential method. Generalized Autoregressive Conditional Heteroscedasticity (EGARCH). The best model obtained is ARFIMA (1, d, 1) EGARCH (1,1) which is capable of forecasting with a MAPE value of 3.37%.Keyword : Rice price, forecasting , long memory, leverage effect, GARCH, EGARCH
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.