Abstract

Simple SummaryDeep learning has become a popular technique in modern computer-aided (CAD) systems. In breast cancer CAD systems, breast pectoral segmentation is an important procedure to remove unwanted pectoral muscle in the images. In recent decades, there are numerous studies aiming at developing efficient and accurate methods for pectoral muscle segmentation. However, some methods heavily rely on manually crafted features that can easily lead to segmentation failure. Moreover, deep learning-based methods are still suffering from poor performance at high computational costs. Therefore, we propose a novel deep learning segmentation framework to provide fast and accurate pectoral muscle segmentation result. In the proposed framework, the novel network architecture enables more useful information to be used and therefore improve the segmentation results. The experimental results using two public datasets validated the effectiveness of the proposed network.As an important imaging modality, mammography is considered to be the global gold standard for early detection of breast cancer. Computer-Aided (CAD) systems have played a crucial role in facilitating quicker diagnostic procedures, which otherwise could take weeks if only radiologists were involved. In some of these CAD systems, breast pectoral segmentation is required for breast region partition from breast pectoral muscle for specific analysis tasks. Therefore, accurate and efficient breast pectoral muscle segmentation frameworks are in high demand. Here, we proposed a novel deep learning framework, which we code-named PeMNet, for breast pectoral muscle segmentation in mammography images. In the proposed PeMNet, we integrated a novel attention module called the Global Channel Attention Module (GCAM), which can effectively improve the segmentation performance of Deeplabv3+ using minimal parameter overheads. In GCAM, channel attention maps (CAMs) are first extracted by concatenating feature maps after paralleled global average pooling and global maximum pooling operation. CAMs are then refined and scaled up by multi-layer perceptron (MLP) for elementwise multiplication with CAMs in next feature level. By iteratively repeating this procedure, the global CAMs (GCAMs) are then formed and multiplied elementwise with final feature maps to lead to final segmentation. By doing so, CAMs in early stages of a deep convolution network can be effectively passed on to later stages of the network and therefore leads to better information usage. The experiments on a merged dataset derived from two datasets, INbreast and OPTIMAM, showed that PeMNet greatly outperformed state-of-the-art methods by achieving an IoU of , global pixel accuracy of , Dice similarity coefficient of , and Jaccard of , respectively.

Highlights

  • Breast cancer is one of the most common female cancers worldwide and the second leading cause of mortality in women [1]

  • The advancement of technology transformed mammography procedures from radiography-based films form to digital form, which was known as full-field digital mammography (FFDM)

  • Another reason digital mammography has gained in popularity is that it is cheap, while acquired images can be stored as Digital Imaging and Communications in Medicine (DICOM) files

Read more

Summary

Introduction

Breast cancer is one of the most common female cancers worldwide and the second leading cause of mortality in women [1]. In the US, the breast cancer incidence rate has increased slightly per year from 2012 to 2016; fatalities declined [4]. The contribution of newly developed therapies on reducing mortality rate, breast mammography, a gold standard in the community, has significantly improved survival due to earlier detection and is of great significance. The advantage of digital mammography is that radiologists are able to magnify mammograms or change the brightness or contrast of mammograms for better interpretation. Another reason digital mammography has gained in popularity is that it is cheap, while acquired images can be stored as Digital Imaging and Communications in Medicine (DICOM) files. A breast is imaged in two projection planes including

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call