Abstract

Cluster analysis is a process of separating the objects into groups, so that the objects that belong to the same group are similar to each other and different from the other objects in another group. One method of clustering is Fuzzy C-Means (FCM). FCM is used because each data in a cluster determined by a degree of membership that have value between 0 and 1. This research use two kinds of distance, Manhattan and Euclidean. To determine the proper distance in clustering district / city in Central Java based on indicators of Human Development Index (HDI), we have to calculate the ratio of the standard deviation, where the smaller value indicates a better clustering. While the optimum number of groups obtained from the minimum value of Xie Beni. Variables that used in this research are the indicators of HDI in 2012 for district / city in Central Java, consists of: Life Expectancy Value (years), Literacy Rate (percent), Average Length of School (years), and Purchasing Power Parity (thousands rupiah). The results from this research are the distance that gives a better quality is Euclidean and the optimum cluster given when the number of cluster is five with the smallest value of Xie Beni is 0,50778.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.