Abstract

Proton exchange membrane fuel cells (PEMFCs) play a crucial role in clean energy systems. Effective control of these systems is essential to optimize their performance. However, conventional control methods exhibit limitations in handling disturbances and ensuring robust control. To address these challenges, this paper presents a novel PI sliding mode controller-based super-twisting algorithm (PISMCSTA). The proposed controller is applied to drive the DC/DC boost converter in order to improve the PEMFC output power quality. In addition, the black widow optimization algorithm (BWOA) has been chosen to enhance and tune the PISMCSTA parameters according to the disturbance changes. The performance of the PISMCSTA is compared with the conventional STA controller. Comparative results are obtained from numerical simulations and these results show that the developed proposed PISMCSTA gives better results when compared to the conventional STA. A reduction of up to 8.7% in the response time could be achieved and up to 66% of the chattering effect could be eliminated by using the proposed controller. Finally, according to these results, the proposed approach can offer an improvement in energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call