Abstract

The water balance inside a fuel cell was analysed and several equations were introduced as functions of fuel cell gas-stream inlet and outlet pressures, inlet relative humidities (RHs), temperature, pressure drops across flow channels, and reactant partial pressures. The effect of RH on PEM fuel cell performance was studied at elevated temperatures under ambient backpressure using Nafion ®-based MEAs. The results showed that fuel cell performance could be depressed significantly by decreasing RH from 100 to 25%. AC impedance and cyclic voltammetry techniques were employed to diagnose the RH effect on fuel cell reaction kinetics. Reducing RH can result in slower electrode kinetics, including electrode reaction and mass diffusion rates, and higher membrane resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.