Abstract

This article presents a direct method for temperature control in solid-state lasers, where temperature stability is crucial for optimizing the performance and reliability of such lasers. The proposed method utilizes Peltier chips for both cooling and heating the laser crystal to achieve precise temperature regulation.The system design is based on the step response of the open-loop thermal system and employs a proportional-integral (PI) controller for closed-loop temperature control. Comprehensive testing on a femtosecond Titanium-Sapphire Laser (Ti:Sapphire laser) demonstrated that the system is capable of maintaining the desired operating temperature with remarkable stability and efficiency, highlighting its practicality for real-world applications.Method Outline:•Utilization of Peltier chips for precise temperature control.•Estimation of first-order transfer function based on step response.•Implementation of a proportional-integral (PI) controller for closed-loop temperature regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.