Abstract

In China, increasing the quantity and quality of total carbon and nitrogen stocks in sandy soil used for crop production is an important research issue. Soil amendment with pelletized straw could improve both soil physical structure and fertility in sandy soils, but these aspects remain understudied. The present pot and field experiments examined the dynamic changes in sandy soil water holding capacity, soil bulk density, soil total carbon and nitrogen stocks, and the distribution of water-stable aggregates and soil total carbon stocks related to aggregates across the following treatments: no fertilization (i.e., study control (CK)), normal fertilizer rate (NM), soil amendment at 150 Mg ha−1 (S150), manure amendment at 150 Mg ha−1 (M150), pelletized straw amendment at 75 Mg ha−1 (PS75), and pelletized straw amendment at 150 Mg ha−1 (PS150). The results show that the pelletized straw incorporation significantly increased water holding capacity and decreased soil bulk density. PS150 notably increased the large macroaggregates (>2000 μm) proportion and decreased the ratio of <250 μm aggregate size fractions in comparison with CK, NM, S150, and M150 at 0–20 and 20–40 cm soil depths. Compared with the CK treatment, the bulk soil carbon and nitrogen stocks in the 0–20 cm layers under the PS150 treatment were significantly increased by 85.2% and 302.9%, and in the 20–40 cm layers those increased by 136.4% and 257.1%, respectively. The PS150 treatment resulted in higher soil organic carbon (SOC) and particulate organic carbon content than the CK and PS75 treatments, whereas the PS75 treatment achieved maximum soil inorganic carbon content. The pelletized straw treatment increased the large macroaggregate-associated soil total carbon content at 0–20 and 20–40 cm soil depths. The maximum soil total carbon stocks were in the small macroaggregates (250 < WSA < 2000 μm) rather than in the large macroaggregate and microaggregates under the PS75 and PS150 treatments. Additionally, the pelletized straw and manure amendments increased the yield of silage corn, which was dependent on the increase in soil total carbon and nitrogen content in the macroaggregates, whereas the soil and manure amendments did not facilitate sandy soil aggregation and soil total carbon stock increases. In conclusion, PS150 was found to be the optimal amendment for maintaining sandy soil profile physico-chemical properties through macroaggregate stabilization. These results will be beneficial for arid and semi-arid regions, thus contributing to soil carbon and nitrogen conservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call