Abstract

Mankind must continue to explore the universe in order to gain a better understanding of how we relate to it and how we can best use its resources to our benefit. Because of the significant costs of this type of exploration, it can more effectively be accomplished through an international team effort. This unified effort must include the design, planning, and execution phases of future space missions, extending down to such activities as the processing, pelletization, and encapsulation of the fuel that will be used to support the spacecraft electrical power generation systems. Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been 238PuO2, its long half‐life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), radioisotope Stirling systems or a combination of these. However, all of the aforementioned systems will be thermally driven by General‐Purpose Heat Source (GPHS) fueled clads in some configuration. Each GPHS fueled clad contains a 150‐gram pellet of 238PuO2, and each pellet is encapsulated within an iridium‐alloy shell. Historically, the fabrication of the iridium‐alloy shells has been performed at EG&G Mound, and Oak Ridge National Laboratory, and the girth welding of the GPHS capsules has been performed at Westinghouse Savannah River Corporation, and Los Alamos National Laboratory. This paper describes a cost effective alternative method for the production of GPHS capsules. Fundamental considerations such as the potential production options, the associated support activities, and the methodology to transport the welded fueled clads are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.