Abstract

Changes in the ecological stoichiometry of C, N, and P in the pelagic zone are reported from a whole-lake manipulation of the food web of Lake 227, an experimentally eutrophied lake at the Experimental Lakes Area, Canada. Addition of northern pike eliminated populations of planktivorous minnows by the third year (1995) after pike introduction, and in the fourth year after pike addition (1996), a massive increase in the abundance of the large-bodied cladoceran Daphnia pulicaria occurred. Accompanying this increase in Daphnia abundance, zooplankton community N:P declined, seston concentration and C:P ratio decreased, and dissolved N and P pools increased. During peak abundance, zooplankton biomass comprised a significant proportion of total epilimnetic phosphorus (greater than 30%). During the period of increased Daphnia abundance, concentrations of dissolved inorganic nitrogen (TIN) increased more strongly than dissolved phosphorus (TDP), and thus TIN:TDP ratios were elevated. Sedimentation data indicated that increased grazing led to greatly reduced residence times of C, N, and especially P in the water column during 1996. Finally, previously dominant N-fixing cyanobacteria were absent during 1996. Our results show that strong effects of food-web structure can occur in eutrophic lakes and that stoichiometric mechanisms play a potentially important role in generating these effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.