Abstract

AbstractSea ice retreat, changing stratification, and ocean acidification are fundamentally changing the light availability and physico‐chemical conditions for primary producers in the Arctic Ocean. However, detailed studies on ecophysiological strategies and performance of key species in the pelagic and ice‐associated habitat remain scarce. Therefore, we investigated the acclimated responses of the diatoms Thalassiosira hyalina and Melosira arctica toward elevated irradiance and CO2 partial pressures (pCO2). Next to growth, elemental composition, and biomass production, we assessed detailed photophysiological responses through fluorometry and gas‐flux measurements, including respiration and carbon acquisition. In the pelagic T. hyalina, growth rates remained high in all treatments and biomass production increased strongly with light. Even under low irradiances cells maintained a high‐light acclimated state, allowing them to opportunistically utilize high irradiances by means of a highly plastic photosynthetic machinery and carbon uptake. The ice‐associated M. arctica proved to be less plastic and more specialized on low‐light. Its acclimation to high irradiances was characterized by minimizing photon harvest and photosynthetic efficiency, which led to lowered growth. Comparably low growth rates and strong silification advocate a strategy of persistence rather than of fast proliferation, which is also in line with the observed formation of resting stages under low‐light conditions. In both species, responses to elevated pCO2 were comparably minor. Although both diatom species persisted under the applied conditions, their competitive abilities and strategies differ strongly. With the anticipated extension of Arctic pelagic habitats, flexible high‐light specialists like T. hyalina seem to face a brighter future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.