Abstract

Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS) production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v.) to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg) were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom). Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity.

Highlights

  • IntroductionThe ancient phylum of Cnidaria includes Anthozoa (sea anemones and corals) and Medusozoa

  • Plant- and animal-derived drugs, whose discovery and biological activity have been under investigation for years, are reported as a good research model for studying protein structure-function relationship, ascertaining biological mechanisms and as potential candidates for drug development [1,2].Among venomous marine animals, the ancient phylum of Cnidaria includes Anthozoa and Medusozoa

  • For the step, to investigate the mechanisms related to the inflammatory process and oxidative stress possibly induced by Pelagia noctiluca crude venom, venom-injected rats were treated with tempol, as a potent antioxidant

Read more

Summary

Introduction

The ancient phylum of Cnidaria includes Anthozoa (sea anemones and corals) and Medusozoa. This latter comprises Cubozoa, Hydrozoa, Scyphozoa (known as true jellyfish) and Staurozoa. All of them represent an interesting source of biologically active compounds [2,3,4,5,6,7] This relevant aspect is due to their peculiar cells, called nematocytes, specialized stinging cells, located in tentacles and oral arms. They produce an organoid, the nematocyst, consisting of a capsule wall containing an inverted tubule and a fluid matrix in which various toxins are stored

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.