Abstract

We predict a new type of phase transition in a quasi-two dimensional system of electrons at high magnetic fields, namely the stabilization of a density wave which transforms a two dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. The quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps which decreases the total electron energy, thus leading to a magnetic breakdown induced density wave (MBIDW) ground state. We show that this DW instability has some qualitatively different properties in comparison to analogous DW instabilities of Peierls type. E. g. the critical temperature of the MBIDW phase transition arises and disappears in a peculiar way with a change of the inverse magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.