Abstract

We revisit the celebrated Peierls–Onsager substitution for weak magnetic fields with no spatial decay conditions. We assume that the non-magnetic [Formula: see text]-periodic Hamiltonian has an isolated spectral band whose Riesz projection has a range which admits a basis generated by [Formula: see text] exponentially localized composite Wannier functions. Then we show that the effective magnetic band Hamiltonian is unitarily equivalent to a Hofstadter-like magnetic matrix living in [Formula: see text]. In addition, if the magnetic field perturbation is slowly variable in space, then the perturbed spectral island is close (in the Hausdorff distance) to the spectrum of a Weyl quantized minimally coupled symbol. This symbol only depends on [Formula: see text] and is [Formula: see text]-periodic; if [Formula: see text], the symbol equals the Bloch eigenvalue itself. In particular, this rigorously formulates a result from 1951 by J. M. Luttinger.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call