Abstract

Globular adiponectin (GAD) as the active domain of adiponectin is a promising candidate for anti-diabetic drug development. The recombinant production of GAD in Escherichia coli, however, is difficult because it is mainly expressed as inclusion bodies which need to be refolded to regain function. In this study we developed a novel method for refolding of GAD with a high efficiency by using polyethylene glycol (PEG) conjugation. An artificially designed DNA sequence encoding for GAD was synthesized and inserted into the pET28a vector to construct an expression plasmid which was thereafter transformed into E. coli BL21 (DE3) host cells for heterologous expression. After bacterial cell culture employing auto-induction medium, the inclusion bodies were collected, washed and dissolved in guanidine hydrochloride before PEG conjugation. Then the PEG-conjugated GAD was refolded by dialysis and purified by two steps of chromatography. The refolded conjugate showed a marked glucose-lowering activity in mice, demonstrating that it had been successfully refolded. As a convenient method, PEGylation-aided refolding could also be tested on other proteins to explore its suitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call