Abstract
Nanoscale metal-organic frameworks (nMOFs) are a unique type of hybrid materials, which are broadly applicable as cargo delivery systems. However, the relatively low material stability and insufficient cancer cell interacting capacity have limited nMOFs' applications in cancer theranostics. Herein, a zirconium-based nMOF UiO-66-N3 was synthesized, and its surface was covalently functionalized with alkyne-containing polyethylene glycol (PEG) via the azide-alkyne click chemistry. After that, F3 peptide was attached for targeting of cancer cells (the material was denoted as UiO-66-PEG-F3). Doxorubicin (DOX) served as a therapeutic drug and a fluorescent label in this study, and it was transported into UiO-66-PEG conjugates with sufficient drug loading efficiency. pH-responsive release of DOX from UiO-66 conjugates was witnessed. The structural integrity of UiO-66-N3 was maintained post the surface modification process. Flow cytometry and confocal fluorescence microscopy revealed that DOX/UiO-66-PEG-F3 had stronger accumulation in MDA-MB-231 cells (nucleolin+) compared with DOX/UiO-66-PEG. In order to track the pharmacokinetic behavior (organ distribution profile) in vivo, the positron-emitting zirconium-89 (89Zr) was incorporated into UiO-66-N3. Similar PEGylation and F3 peptide conjugation resulted in the formation of 89Zr-UiO-66-PEG-F3. Serial positron emission tomography (PET) imaging demonstrated that the preferential accumulation of 89Zr-UiO-66-PEG-F3 in MDA-MB-231 tumors, and their liver clearance was faster than PEGylated UiO-66 using noncovalent methods. Thus, the PEGylated nMOFs using covalent strategies may find broad application in future cancer theranostics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.