Abstract

A PEGylated multistimuli-responsive dendritic copolymer-doxorubicin (DOX) prodrug-based nanoscale system was developed as a delivery model for hydrophobic drugs. In this system, PEGylation did not only prolong circulation of the nanoscale system in the body (average half-life of 14.6 h, four times longer than that of the free drug), but also allowed the system to aggregate into nanoparticles (NPs) because of interactions between hydrophilic (polyethylene glycol) and hydrophobic (dendritic prodrug) moieties for better uptake through endocytosis (around 150 nm of particle size with a neutrally charged surface for the PEGylated dendritic prodrug with 12.1 wt % of DOX). The dendritic structure was built by bridging poly[ N-(2-hydroxypropyl)methacrylamide] segments with enzyme-responsive GFLG (Gly-Phe-Leu-Gly tetrapeptide) linkers. DOX was released by hydrolyzing the hydrazone bond between DOX and the copolymer framework in the acidic endosomes/lysosomes. In vitro studies on DOX released from the NPs induced mitochondrial dysfunction during apoptosis. By imaging the main organs and tumor tissues from mice treated with the NPs, boosted accumulation of this nanoscale medicine was found in tumor tissues, leading to a decrease in toxicity and side effects to normal tissues and enhancement in drug tolerance. In the 4T1 breast cancer model, these NPs exhibited a superior antitumor efficacy confirmed by inhibiting angiogenesis, proliferation of tumor tissues, and inducing procedural apoptosis of tumor cells. The highest tumor growth inhibition value mediated by the NPs was up to 86.5%. Therefore, this PEGylated multistimuli-responsive dendritic copolymer-DOX prodrug-based nanoscale system may be further explored as an alternative to traditional chemotherapy for breast cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call