Abstract

Alzheimer’s disease (AD), which is a prevailing type of dementia, presents a significant global health concern. The current therapies do not meet clinical expectations. Amyloid-beta (Aβ) has been found to induce endogenous formaldehyde (FA) accumulation by inactivating FA dehydrogenase (FDH); in turn, excessive FA triggers Aβ aggregation that eventually leads to AD onset. Hence, scavenging FA by astaxanthin (ATX, a strong exogenous antioxidant) may be pursued as a promising disease-modifying approach. Here, we report that liposomal nanoparticles coupled with PEG (PEG-ATX@NPs) could enhance water-solubility of ATX and alleviate cognitive impairments by scavenging FA and reducing Aβ deposition. To enable drug delivery to the brain, liposomes were used to encapsulate ATX and then coupled with PEG, which produced liposomal nanoparticles (PEGATX@NPs) with a diameter of <100 nm. The PEG-ATX@NPs reduced Aβ neurotoxicity by both degrading FA and reducing FA-induced Aβ assembly in vitro. Intraperitoneal administration of PEG-ATX@NPs in APPswe/PS1dE9 mice (APP/PS1, a familial model of AD), not only decreased the levels of brain FA and malondialdehyde (MDA, a typical product of oxidative stress), but also attenuated both intracellular Aβ oligomerization and extracellular Aβ-related senile plaque (SP) formation. These pathological changes were accompanied by rescued ability of spatial learning and memory. Collectively, PEG-ATX@NPs improved the water-solubility, bioavailability, and effectiveness of ATX. Thus, it has the potential to be developed as a safe and effective strategy for treating AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call