Abstract

Delivery of proteins into cells may alter cellular functions as various proteins are involved in cellular signaling by activating or deactivating the corresponding pathways and, therefore, can be used in cancer therapy. In this study, we have demonstrated for the first time that PEGylated graphene oxide (GO) can be exploited as a nanovector for efficient delivery of proteins into cells. In this approach, GO was functionalized with amine-terminated 6-armed polyethylene glycol (PEG) molecules, thereby providing GO with proper physiological stability and biocompatibility. Proteins were then loaded onto PEG-grafted GO (GO-PEG) with high payload via noncovalent interactions. GO-PEG could deliver proteins to cytoplasm efficiently, protecting them from enzymatic hydrolysis. The protein delivered by GO-PEG reserves its biological activity that regulates the cell fate. As a result, delivery of ribonuclease A (RNase A) led to cell death and transport of protein kinase A (PKA) induced cell growth. Taken together, this work demonstrated the feasibility of PEGlyated GO as a promising protein delivery vector with high biocompatibility, high payload capacity and, more importantly, capabilities of protecting proteins from enzymatic hydrolysis and retaining their biological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.