Abstract
Unimolecular micelles have attracted intense interests as drug carriers for tumor chemotherapy owing to their superior stability in comparison with the self-assembled supramolecular ones. Among them, the dendritic polymers with the polar frameworks could favour the loading of chemotherapeutic drugs rather than the hyperbranched polymers via radical polymerization, by enhancing the interaction with drugs. While the tedious synthesis procedure for dendritic polymers could be simplified with the construction principle on urethane chemistry. Here, the PEGylated dendritic polyurethanes, Ph-DPUGly-PEG and Ph-DPUTEA-PEG, were designed with glycerol or triethanolamine as monomer, respectively. The effect of the molecular architecture of the Ph-DPU-PEGs unimolecular micelles on the controlled drug releasing performance was compared. It was found that the Ph-DPUTEA-PEG with tertiary amine as branching points could efficiently endow the pH-triggered drug release, due to its protonation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.