Abstract

Burn injuries damage skin function and increased the risk of infection. Using natural-inspired antibiotic-free nanofibrous in wound healing has attracted increasing attention. Here, mPEG-Curcumin (mPEG-CUR) was synthesized through a novel, cheap, and high-efficiency method, and incorporated onto poly(vinyl alcohol) (PVA)/zwitterionic poly(sulfobetaine vinylimidazole)-grafted chitosan (CS-g-PNVIS) nanofiber. Due to the lack of electrospinning capability of CS-g-PNVIS and its brittleness, to obtain nanofibers with uniform and bead-free morphology, PVA was used as an electrospinning aid polymer, so that the prepared nanofibers have suitable mechanical properties with an average diameter between 115 ± 18–157 ± 39 nm. The heat-treated nanofibers have adequate swelling and dimensional stability. Time-killing assay proved the antibacterial activity of the mPEG-CUR-loaded nanofibers towards Gram-positive and Gram-negative bacterium. The MTT investigation illustrated the non-cytotoxicity and biocompatibility of the nanofibers. In vivo studies exhibited significant improvement in the mean wound area closure by applying mPEG-CUR nanofibers. The mPEG-CUR-loaded nanofibers showed the highest antioxidant (86 %) power after 40 min. Moreover, nanofibers possess a desirable WVT rate (3.4 ± 0.24–5.5 ± 0.3 kg/m2.d) and good breathability and had the potential to supply a suitable moist environment in the wounded area. This approach can be the beginning of a new path in designing a new generation of nanofiber mats for wound healing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call