Abstract

Lymph nodes (LNs) are peripheral lymphoid organs essential for vaccine-induced immune responses. Although cationic liposomes have been documented as a novel adjuvant and vaccine delivery system, whether enhancing LN targeting would improve the efficiency of cationic liposome-formulated vaccines has not been elucidated yet. In the present study we investigated the effect of PEGylation on LN targeting and the immunogenicity of cationic liposome-formulated vaccines. DOTAP cationic liposomes were incorporated with 1 or 5mol% of DSPE-PEG2000 and labeled with near infrared fluorescent dyes. The lymphatic trafficking and biodistribution of different liposomes after subcutaneous (s.c.) injection were recorded using an in-vivo imaging system. The results showed that incorporation of 1mol% DSPE-PEG2000 not only accelerated the drainage of DOTAP liposomes into draining LNs, but also prolonged their LN retention and enhanced liposome uptake by resident antigen-presenting cells. On the other hand, although incorporating 5mol% of DSPE-PEG2000 into DOTAP liposomes enhanced their LN retention and uptake to a lesser extent, it prolonged blood circulation of DOTAP liposomes and increased their splenic accumulation. In addition, PEGylated DOTAP liposomes augmented primary and secondary anti-OVA antibody responses more potently than nonPEGylated DOTAP liposomes did. Hence, incorporating a small amount of DSPE-PEG2000 into DOTAP liposomes not only increased the passive LN targeting of DOTAP-formulated vaccines but also modulated their biodistribution in vivo, which consequently improved the efficiency of cationic liposome-formulated vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call