Abstract

Aceclofenac is a non-steroidal anti-inflammatory drug with poor aqueous solubility and a short half-life resulting in low bioavailability. Aceclofenac-loaded solid lipid microparticles based solidified reverse micellar solution (SLMs-SRMS) for oral drug delivery was investigated to improve the bioavailability and control drug release. Hot homogenization method was adopted to prepare the SLMs using a homolipid irvingia fat and Phospholipon® 90H with or without propylene glycol 6000 (PEGylation) in different ratios and characterized in vitro. The in vivo anti-inflammatory activity of the drug was determined on mice inflamed with carrageenan as phlogistic agent. Results showed that the morphology and particle sizes of the SLMs were spherical and smooth and ranged between 5.24 ± 0.01–97.44 ± 0.18 μm. EE % ranged between 67 - 81 %. A significant (p < 0.05) viscosity of 490 mPasec-1 was obtained. FTIR spectra indicated compatibility amongst the constituents. DSC showed a broad peak which depicted an imperfect matrix resulting in a deformation of crystal arrangement creating many spaces for drug entrapment. Delayed drug release was observed in almost all the formulations in SIF (pH, 6.8). Anti-inflammatory activity showed a significant inhibitory effect (p < 0.05, up to 90 %). Hence, the aceclofenac-loaded SLMs-SRMS showed desirable characteristics and could be used for controlled delivery of aceclofenac and thus alternative to conventional aceclofenac oral formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.