Abstract

Many biological studies of transcriptional control mechanisms produce lists of genes and non-coding genomic intervals from corresponding gene expression and epigenomic assays. In higher organisms, such as eukaryotes, genes may be regulated by distal elements, with these elements lying 10s–100s of kilobases away from a gene transcription start site. To gain insight into these distal regulatory mechanisms, it is important to determine comparative enrichment of genes of interest in relation to genomic regions of interest, and to be able to do so at a range of distances. Existing bioinformatics tools can annotate genomic regions to nearest known genes, or look for transcription factor binding sites in relation to gene transcription start sites. Here, we present PEGS ( Peak set Enrichment in Gene Sets). This tool efficiently provides an exploratory analysis by calculating enrichment of multiple gene sets, associated with multiple non-coding elements (peak sets), at multiple genomic distances, and within topologically associated domains. We apply PEGS to gene sets derived from gene expression studies, and genomic intervals from corresponding ChIP-seq and ATAC-seq experiments to derive biologically meaningful results. We also demonstrate an extended application to tissue-specific gene sets and publicly available GWAS data, to find enrichment of sleep trait associated SNPs in relation to tissue-specific gene expression profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.