Abstract

AbstractInspired by human skin, soft sensors that are capable of sensing various external signals have been an active area of research. However, the vast majority of the developed soft sensors still lag far behind human skin in terms of multimodal sensing capability. Herein, this work reports on a multimodal soft sensor that can decouple thermal and mechanical signals. The sensor is made of poly(ethylene glycol) gel (PEGgel) containing ionic liquid, which is stretchable and transparent and shows decent strain and temperature sensing performances. Importantly, analysis of the ion relaxation dynamics shows that the charge relaxation time and capacitance change of the sensor are independently sensitive to the variations of temperature and mechanical deformation, respectively. By measuring the charge relaxation time and capacitance, the thermal and mechanical signals detected by the PEGgel sensor can be nicely decoupled without signal interference. Such a multimodal soft sensor may serve as a starting point for the development of lifelike soft sensors for high‐tech applications in a variety of fields such as soft robotics, the internet of things, and human–machine interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call