Abstract

Due to their biocompatibility and adjustable chemical structure and morphology, hydrogels have great potential in many applications, and can be used to enhance protein crystal quality and crystallization efficiency, contributing to biomedicine manufacturing. Monodispersed PEGDA hydrogel microspheres (HMSs) were synthesized using a Lego-inspired microfluidic device. The generated droplets were then UV polymerized, partially hydrolyzed with 0.1 M NaOH solution to improve their absorption capacity, and soaked in a buffer solution containing 0, 0.5, 1, 2, and 4 M NaCl. Salt-loaded HMSs were used as the medium for the enhanced crystallization of hen egg white lysozyme from aqueous solutions. Different supersaturations were achieved in the protein solutions by releasing NaCl of different concentrations from HMSs, as confirmed by electrical conductivity measurements. HMSs with or without NaCl can both provide heterogeneous nucleation sites due to their nano-porous structure and wrinkled surface. The addition of NaCl-loaded HMSs to the protein solution can also increase or decrease the supersaturation in the whole solution or locally near the HMS, leading to controllable nucleation time and crystal size distribution dependent on the NaCl concentration loaded into HMSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.