Abstract

Pre-hospital control of bleeding is critical to save lives, however the development of hemostatic agents with efficient and safe performance is still a challenge. In this study, a hybrid hemostatic gauze (MG-PEG) with in-situ growth and tightly bound mesoporous silicon (MSN) was prepared by template method for hemorrhage control. This material integrated meso-porosity, blood coagulation and stability into flexible gauze fiber. The PEG in MG-PEG was not only used as template for the in-suit MSN growth, but also acted as joint connection between the gauze fibers and MSN. The MSN particles were firmly bound to the surface of gauze fibers with extremely low leakage after 3 min of sonication and displayed a comparable coagulant activity to untreated sample. The results of animal experiments confirmed that MG-PEG possessed superior hemostatic performance over silicates-based inorganic hemostasis-Combat Gauze, in terms of higher coagulant activity (in vivo clotting time <200 s), minimized loss of active components (liquids OD was only 3 % of CG), well biocompatibility (hemolysis ratio < 5 %, no cytotoxicity) and wider indications range for practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call