Abstract

Thermosensitive hydrogels based on chitosan are of great interests for injectable implant drug delivery. The poly(ethylene glycol)-grafted-chitosan (PEG-g-CS) hydrogel was reported as a potential thermosensitive system. The objective of the present study is to evaluate the cytotoxicity, in vivo degradation and drug release of PEG-g-CS hydrogel. Cytotoxicity was evaluated using L929 murine fibrosarcoma cell line. Degradation and drug release in vivo were investigated by subcutaneous injection of the hydrogel into Sprague-Dawley rats. PEG-g-CS polymer exhibits no significant cytotoxicity when its concentration is less than 3 mg mL−1. After being implanted, PEG-g-CS hydrogel maintains its integrity for two weeks and collapses, merging into the tissue, in the third week. It causes moderate inflammatory response but no fibrous encapsulation around the hydrogel is found. The hydrogel presents a three-week sustained release of cyclosporine A with no significant burst release in vitro and produces the effective drug concentration in blood for more than five weeks in vivo, performing almost the same bioavailability to chitosan/glycerophosphate hydrogel. Further modifications of PEG-g-CS hydrogel might be necessary to modulate the degradation and to mitigate the fluctuations in blood drug concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call