Abstract
We have recently designed and developed a dual-functional drug carrier that is based on poly(ethylene glycol) (PEG)-derivatized farnesylthiosalicylate (FTS, a nontoxic Ras antagonist). PEG5K-FTS2 readily form micelles (20–30 nm) and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these micelles. PTX formulated in PEG5K-FTS2 micelles showed an antitumor activity that was more efficacious than Taxol in a syngeneic mouse model of breast cancer (4T1.2). In order to further improve our PEG-FTS micellar system, four PEG-FTS conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/FTS (1/2 vs 1/4) in the conjugates. These conjugates were characterized including CMC, drug loading capacity, stability, and their efficacy in delivery of anticancer drug PTX to tumor cells in vitro and in vivo. Our data showed that the conjugates with four FTS molecules were more effective than the conjugates with two molecules of FTS and that FTS conjugates with PEG5K were more effective than the counterparts with PEG2K in forming stable mixed micelles. PTX formulated in PEG5K-FTS4 micelles was the most effective formulation in inhibiting the tumor growth in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.