Abstract

Dual imaging of lung deposition and gene expression following the pulmonary delivery of a gene formulation is useful for a precise analysis of gene transfection efficiency in vivo. As a novel probe for evaluating lung deposition, in this study, a poly(ethylene glycol)-conjugated near-infrared fluorescent probe (PEG-NIRF) was newly synthesized, and compared with indocyanine green (ICG), for application to pDNA/polyethyleneimine (PEI) complex. PEG-NIRF had superior characteristics including a larger Stokes shift (absorption maximum, 662 nm; emission maximum, 772 nm) and relatively equivalent fluorescence intensity compared with ICG. ICG affected the physicochemical properties of pDNA/PEI complex with a loss of fluorescence intensity, while PEG-NIRF did not. Experiments in mice demonstrated that PEG-NIRF showed greater lung localization than ICG following pulmonary co-delivery with pDNA/PEI complex, indicating the possibility of accurately evaluating lung deposition. Moreover, it was clarified that the evaluation of lung deposition by PEG-NIRF even at 60 min could be significantly correlated with gene expression in each mouse following pulmonary co-delivery with pDNA/PEI complex. These results suggest that PEG-NIRF is widely applicable to the dual imaging of the lung deposition and gene expression of inhaled gene formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call