Abstract

Thirty years ago, Klaus Arnold and others showed that the action of PEG in promoting cell-cell fusion was not due to such effects as surface absorption, cross-linking, solubilization, etc. Instead PEG acted simply by volume exclusion, resulting in an osmotic force driving membranes into close contact in a dehydrated region. This simple observation, based on a number of physical measurements and the use of PEG-based detergents that insert into membranes, spawned several important areas of research. One such area is the use of PEG to bring membranes into contact so that the role of different lipids and fusion proteins in membrane fusion can be examined in detail. We have summarized here insights into the fusion mechanism that have been obtained by this approach. This evidence indicates that fusion of model membranes (and probably cell membranes) occurs via severely bent lipidic structures formed at the point of sufficiently close contact between membranes of appropriate lipid composition. This line of research has also suggested that fusion proteins seem to catalyze fusion in part by reducing the free energy of hydrophobic interstices inherent to the lipidic fusion intermediate structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.