Abstract

The conjugation of trypsin (try) and trypsin inhibitor (tryi) with poly(ethylene glycol) (PEG) and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) was investigated in aqueous solution, using multiple spectroscopic methods, thermodynamic analysis, and molecular modeling. Thermodynamic parameters ΔS, ΔH, and ΔG showed protein-PEG bindings occur via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As polymer size increased more stable PEG-protein conjugate formed, while hydrophobic mPEG-anthracene forms less stable protein complexes. Modeling showed the presence of several H-bonding contacts between polymer and amino acids that stabilize protein-polymer conjugation. Polymer complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase in random structures, indicating protein structural destabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.