Abstract

In recent years, the rapid growth of active consumers in the distribution networks transforms the modern power markets' structure more independent, flexible, and distributed. Specifically, in the recent trend of peer-to-peer (P2P) transactive energy systems, the traditional consumers became prosumers (producer+consumer) who can maximize their energy utilization by sharing it with neighbors without any conventional arbitrator in the transactions. Although a distributed energy pricing scheme is inevitable in such systems to make optimal decisions, it is challenging to establish under the influence of non-linear physical network constraints with limited information. Therefore, this paper presents a distributed pricing strategy for P2P transactive energy systems considering voltage and line congestion management, which can be utilized in various power network topologies. This paper also introduces a new mutual reputation index as a product differentiation between the prosumers to consider their bilateral trading willingness. In this paper, a Fast Alternating Direction Method of Multipliers (F-ADMM) algorithm is realized instead of the standard ADMM algorithm to improve the convergence rate. The effectiveness of the proposed approach is validated through software simulations. The result shows that the algorithm is scalable, converges faster, facilitates easy implementation, and ensures maximum social welfare/profit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.