Abstract

Introducing P2P energy trading in the consumers’ local market makes the energy utilization rates of users improved significantly. However, the output uncertainty of distributed energy sources poses challenges to the normal conduct of the P2P transaction. The uncertainty sources have to pay for the reserve resources for the possible power gap. The difference between the actual output and the day ahead market planning needs to be charged to punish the uncertainty producers. Therefore, a novel pricing strategy (uncertainty marginal price, UMP) is proposed in this aper to charge the uncertainty producers and credit the reserve resources. Voltage sensitivity coefficients, power transfer distribution factors and loss sensitivity factors are introduced to linearize the power flow model. The whole problem can be formulated as a robust model and decomposed into two subproblems. CCG algorithm is applied to solve the two-stage robust model. This new pricing strategy is verified on the IEEE-33 and 69 bus systems. Numerical results indicate that the proposed price increases with the rise of uncertainty level. The reference points of the system robustness can be chosen as the inflection points of the operation cost curves under different uncertainty levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.