Abstract

Vehicular communications are becoming an emerging technology for safety control, traffic control, urban monitoring, pollution control, and many other road safety and traffic efficiency applications. All these applications generate a lot of data which should be distributed among communication parties such as vehicles and users in an efficient manner. On the other hand, the generated data cause a significant load on a network infrastructure, which aims at providing uninterrupted services to the communication parties in an urban scenario. To make a balance of load on the network for such situations in the urban scenario, frequently accessed contents should be cached at specified locations either in the vehicles or at some other sites on the infrastructure providing connectivity to the vehicles. However, due to the high mobility and sparse distribution of the vehicles on the road, sometimes, it is not feasible to place the contents on the existing infrastructure, and useful information generated from the vehicles may not be sent to its final destination. To address this issue, in this paper, we propose a new peer-to-peer (P2P) cooperative caching scheme. To minimize the load on the infrastructure, traffic information among vehicles is shared in a P2P manner using a Markov chain model with three states. The replacement of existing data to accommodate newly arrived data is achieved in a probabilistic manner. The probability is calculated using the time to stay in a waiting state and the frequency of access of a particular data item in a given time interval. The performance of the proposed scheme is evaluated in comparison to those of existing schemes with respect to the metrics such as network congestion, query delay, and hit ratio. Analysis results show that the proposed scheme has reduced the congestion and query delay by 30% with an increase in the hit ratio by 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call