Abstract

In UMTS (universal mobile telecommunications system) networks upgraded with HSPA (high speed packet access) technology, the high access bandwidth and advanced mobile devices make it applicable to share large files among mobile users by peer-to-peer applications. To receive files quickly is essential for mobile users in file sharing applications, mainly because they are subject to unstable signal strength and battery failures. While many researches present peer-to-peer file sharing architectures in mobile environments, few works focus on decreasing the time spent in disseminating files among users. In this paper, we present an efficient peer-to-peer file sharing design for HSPA networks called AFAM — Adaptive efficient File shAring for uMts networks. AFAM can decrease the dissemination time by efficiently utilizing the upload-bandwidth of mobile nodes. It uses an adaptive rearrangement of a node's concurrent uploads, which causes the count of the node's concurrent uploads to lower while ensuring that the node's upload-bandwidth can be efficiently utilized. AFAM also uses URF — Upload Rarest First policy for the block selection and receiver selection, which achieves real rarest-first for the spread of blocks and effectively avoids the “last-block” problem in file sharing applications. Our simulations show that, AFAM achieves much less dissemination time than other protocols including BulletPrime and a direct implementation of BitTorrent for mobile environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.