Abstract

As a key component of electronic skins, flexible pressure sensors have attracted more and more attention because of the increasingly growing demand. Stability is a key parameter to evaluate pressure sensors, while relatively few reports have focused on it. Here, a paper-based piezoresistive sensor is developed, in which, the airlaid paper based sensing layer is modified with silver nanowires (AgNWs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and sandwiched in between two convex electrodes. Due to the cross bonding of PEDOT:PSS membrane, the conductive paths of AgNWs networks are strengthened and stabilized, thus the stability of the sensor is found to be significantly improved. Besides, to regulate the compressibility by varying sensing layers, the performance of the proposed sensor can be further improved, and its practical application performances in healthcare pulse monitoring, tiny muscle motion, and voice recognition are demonstrated. The results confirm that PEDOT:PSS has the potential as stabilization media to AgNWs for paper-based flexible wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.