Abstract

We investigated three primary causes of old-growth forest pedodiversity imposed by top-down trophic interactions, including pit and mound topography from past tree fall events, current canopy gaps from tree falls, and the influence of individual tree species on soil properties and processes. In this paper, we discuss the effects of pits, mounds, gaps, and individual tree species on pedodiversity in a single soil map unit in an old-growth northern hardwood forest. Pits and level areas had significantly greater soil organic matter, cation-exchange capacity, and exchangeable K and Ca contents than mounds. Gap subplots had significantly less cation-exchange capacity, K, Mg, and Ca compared with level areas within the contiguous forest. Base cations (K, Mg, and Ca) were significantly greater under sugar maple ( Acer saccharum Marsh.) compared with eastern hemlock ( Tsuga canadensis (L.) Carr.). Extractable P was significantly greater under yellow birch ( Betula alleghaniensis Britt.) compared with eastern hemlock. We quantified pedodiversity in an old-growth northern hardwood forest stand and single soil map unit using principal components analyses, ArcGIS, and biodiversity indices. Our results suggest that pedodiversity should be considered in soil survey and forest management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.