Abstract

BackgroundForefoot offloading shoes are special orthopaedic footwear designed to protect and unload the injured part of the foot after surgery and for conservative treatments.The offloading action is often achieved by transferring plantar load to the rearfoot via rocker shoes with reduced contact area between shoe and ground. While these shoes are intended to be worn only for short periods, a compromise must be found between functionality and the risk of alterations in gait patterns at the lower limb joints. In this study, the pedobarographic, kinematic and kinetic effects of a traditional half-shoe and a double-rocker full-outsole shoe were compared to those of a comfortable shoe (control).MethodsTen healthy female participants (28.2 ± 10.0 years) were asked to walk in three different footwear conditions for the left/right foot: control/half-shoe, control/full-outsole, and control/control. Full gait analysis was obtained in three walking trials for each participant in each condition. Simultaneously a sensor insole system recorded plantar pressure in different foot regions. Normalized root-mean-square error, coefficient of determination, and frame-by-frame statistical analysis were used to assess differences in time-histories of kinematic and kinetic parameters between shoes.ResultsThe half -shoe group showed the slowest walking speed and the shortest stride length. Forefoot plantar load was significantly reduced in the half-shoe (maximum force as % of Body Weight: half-shoe = 62.1; full-outsole = 86.9; control = 93.5; p < 0.001). At the rearfoot, mean pressure was the highest in the full-outsole shoe. At the ankle, sagittal-plane kinematics in the full-outsole shoe had a pattern more similar to control.ConclusionsThe half-shoe appears significantly more effective in reducing plantar load at the forefoot than a double-rocker full-outsole shoe, which is designed to reduce forefoot loading by using an insole with a thicker profile anteriorly as to maintain the foot in slight dorsiflexion. However, the half-shoe is also associated with altered gait spatio-temporal parameters, more kinematic modifications at the proximal lower limb joints and reduced propulsion in late stance.Electronic supplementary materialThe online version of this article (doi:10.1186/s13047-015-0116-3) contains supplementary material, which is available to authorized users.

Highlights

  • Forefoot offloading shoes are special orthopaedic footwear designed to protect and unload the injured part of the foot after surgery and for conservative treatments

  • The purpose of this study was to use pedobarography, alongside state-of-the-art gait analysis, to compare the effects of a full-outsole shoe on kinematics and kinetics of lower limb joints with those in a traditional half-shoe, while a normal comfortable shoe was used as a control

  • The present study shows that this effectively helped shifting foot loading towards the rearfoot, where mean pressure and mean force were found to be higher than the control

Read more

Summary

Introduction

Forefoot offloading shoes are special orthopaedic footwear designed to protect and unload the injured part of the foot after surgery and for conservative treatments. The offloading action is often achieved by transferring plantar load to the rearfoot via rocker shoes with reduced contact area between shoe and ground. While these shoes are intended to be worn only for short periods, a compromise must be found between functionality and the risk of alterations in gait patterns at the lower limb joints. A FOS featuring a short-outsole design has proved to be extremely effective in reducing forefoot pressure when compared to the half-shoe, in either appropriate and inappropriate use – i.e. while attempting to put weight on the forefoot [8]. Inconsistent results were observed, leading to the general conclusion that the selection of the most appropriate shoe type depends on specific foot conditions and subjective wearing characteristics

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.