Abstract

BackgroundAssessments of pediatric obstructive sleep apnea (OSA) are underutilized across Canada due to a lack of resources. Polysomnography (PSG) measures OSA severity through the average number of apnea/hypopnea events per hour (AHI), but is resource intensive and requires a specialized sleep laboratory, which results in long waitlists and delays in OSA detection. Prompt diagnosis and treatment of OSA are crucial for children, as untreated OSA is linked to behavioral deficits, growth failure, and negative cardiovascular consequences. We aim to assess the performance of a portable pediatric OSA screening tool at different AHI cut-offs using overnight smartphone-based pulse oximetry. Material and methodsFollowing ethics approval and informed consent, children referred to British Columbia Children's Hospital for overnight PSG were recruited for two studies including 160 and 75 children, respectively. An additional smartphone-based pulse oximeter sensor was used in both studies to record overnight pulse oximetry [SpO2 and photoplethysmogram (PPG)] alongside the PSG.Features characterizing SpO2 dynamics and heart rate variability from pulse peak intervals of the PPG signal were derived from pulse oximetry recordings. Three multivariate logistic regression screening models, targeted at three different levels of OSA severity (AHI ≥ 1, 5, and 10), were developed using stepwise-selection of features using the Bayesian information criterion (BIC). The “Gray Zone” approach was also implemented for different tolerance values to allow for more precise detection of children with inconclusive classification results. ResultsThe optimal diagnostic tolerance values defining the “Gray Zone” borders (15, 10, and 5, respectively) were selected to develop the final models to screen for children at AHI cut-offs of 1, 5, and 10. The final models evaluated through cross-validation showed good accuracy (75%, 82% and 89%), sensitivity (80%, 85% and 82%) and specificity (65%, 79% and 91%) values for detecting children with AHI ≥ 1, AHI ≥ 5 and AHI ≥ 10. The percentage of children classified as inconclusive was 28%, 38% and 16% for models detecting AHI ≥ 1, AHI ≥ 5, and AHI ≥ 10, respectively. ConclusionsThe proposed pulse oximetry-based OSA screening tool at different AHI cut-offs may assist clinicians in identifying children at different OSA severity levels. Using this tool at home prior to PSG can help with optimizing the limited resources for PSG screening. Further validation with larger and more heterogeneous datasets is required before introducing in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.