Abstract
In pediatric cancer patients, determination of optimal vancomycin dosage is essential because of high risk of inadequate concentrations and bacterial resistance. The aim of this study was to determine vancomycin pharmacokinetic parameters in this population and propose dosage optimization to achieve optimal concentration. We retrospectively reviewed the use of vancomycin in pediatric cancer patients with febrile neutropenia (hematological or solid tumor disease). Vancomycin was administered by continuous infusion, and dosages were adapted according to therapeutic drug monitoring results. Blood cultures were performed before the first dose of antibiotic. Vancomycin pharmacokinetic population parameters were determined using NONMEM software, and dosage simulations were performed according to the target concentration (20-25 mg/L). One hundred twenty-one patients were included in this study, representing 301 vancomycin concentrations. Blood cultures were positive in 37.5% of patients, and observed pathogens were mainly Staphylococcus spp. (43.8% methicillin resistant). Volume of distribution (95% confidence interval) was 34.7 L (17.3-48.0), and total apparent clearance (CL) (95% confidence interval) was correlated to body weight, tumor disease, and cyclosporine coadministration: CL = θCL × (WT/70) L/h with θCL = 3.49 (3.02-3.96), 4.66 (3.98-5.31), and 4.97 (4.42-5.41) in patients managed for hematological malignancies with or without cyclosporine coadministration and for solid malignancies, respectively. Based on simulation results, vancomycin dosage (milligram per kilogram) should be adapted to each child on the basis of its body weight and cyclosporine coadministration. Our results highlight the requirement to adapt vancomycin dosage in cancer pediatric population. Simulations have allowed to describe new dosage schedules, and a chart was created for clinicians to adapt vancomycin dosage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.