Abstract
Interest in determining safe and efficacious doses for drug administration in pediatric patients has increased dramatically in recent years. However, published pediatric clinical studies have failed to increase proportionally with adult clinical study publications. In order to assess the current state of pediatric dose determination and the supporting role of physiologically based pharmacokinetic modeling and simulation in determining pediatric dose, the pediatric clinical literature (2006-2016) and case examples of pediatric PBPK modeling efforts were reviewed. The objective of this assessment was to investigate the contribution of PBPK to our understanding of the differences between children and adults, which lead to differences in drug dose. Pediatric and adult dose data were available for 31 small molecule drugs. In general, pediatric dose was well-correlated with adult data, with an apparent tendency for higher body weight- or body surface area-normalized pediatric dose. Overall performance of pediatric PBPK modeling approaches was considered to adequately predict observed data. However, model performance was dependent upon age group simulated, with approximately half of neonatal predictions falling outside of 1.5-fold of observed. In conclusion, there is a clear need for further refinement of starting dose in pediatric phase 1 studies, and utilization of PBPK could lead to reduced numbers of patients required to establish safe and efficacious doses in the pediatric population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.