Abstract
Introduction Asthma is a heterogeneous disease with a range of observable phenotypes. To date, the characterization of asthma phenotypes is mostly limited to allergic versus non-allergic disease. Therefore, the aim of this big data study was to computationally derive asthma subtypes from the OneFlorida Clinical Research Consortium Methods We obtained data from 2012-2020 from the OneFlorida Clinical Research Consortium. Longitudinal data for patients greater than two years of age who met inclusion criteria for an asthma exacerbation based on International Classification of Diseases codes. We used matrix factorization to extract information and K-means clustering to derive subtypes. The distributions of demographics, comorbidities, and medications were compared using Chi-square statistics. Results A total of 39,807 pediatric patients and 23,883 adult patients met inclusion criteria. We identified five distinct pediatric subtypes and four distinct adult subtypes. Pediatric subtype P1 had the highest proportion of black patients, but the lowest use of inhaled corticosteroids and allergy medications. Subtype P2 had a predominance of patients with gastroesophageal reflux disease, whereas P3 had a predominance of patients with allergic disorders. Adult subtype A2 was the most severe and all patients were on biologic agents. Most of subtype A3 patients were not taking controller medications, whereas most patients (>90%) in subtypes A2 and A4 were taking corticosteroids and allergy medications. Conclusion We found five distinct pediatric asthma subtypes and four distinct adult asthma subtypes. Future work should externally validate these subtypes and characterize response to treatment by subtype to better guide clinical treatment of asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Asthma
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.