Abstract
Laser scanners are widely used as the primary sensor for autonomous driving. When the commercialization of autonomous driving is considered, a 2.5-D multi-layer laser scanner is one of the best sensor options. In this paper, a new method is presented to detect pedestrians and vehicles using a 2.5-D multi-layer laser scanner. The proposed method consists of three steps: 1) segmentation; 2) feature extraction; and 3) classification; this paper focuses on the last two steps. In feature extraction, new features for the multi-layer laser scanner are proposed to improve the classification performance. In classification, radial basis function additive kernel support vector machine is employed to reduce the computation time while maintaining the performance. The proposed method is implemented on a real vehicle, and its performance is tested in a real-world environment. The experiments indicate that the proposed method has good performance in many real-life situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.