Abstract
Conflicts between pedestrians and vehicles are one of the common safety issues at signalized intersections. Pedestrian Flashing GREEN (FG), a time interval for pedestrians on crosswalks to safely finish crossing before the next phase occurs, may fail to clear the crosswalk in the allotted time, due to significant pedestrian non-compliant behavior. In this manner, probability of pedestrian-vehicle exposures increases when non-compatible vehicle flows are released at the next immediate phase. This paper seeks to address this issue by presenting a traffic signal control strategy for urban traffic networks that aims to minimize vehicle traveling delay (increase efficiency) as well as pedestrian crossing risk (increase safety). First, a macroscopic model for pedestrian-vehicle mixed-flow networks is proposed. Considering the high-incidence rate of pedestrian violations during FG, an additional Dynamic All RED (DAR) phase is introduced at the end of each FG period, whose duration is adaptively adjusted according to the number of non-compliant pedestrians. With computational complexity being a concern for our model, an evolutionary algorithm with repairing mechanism (EARM), is proposed to solve our problem. Case studies are provided to illustrate the potential impact of the pedestrian movement to the vehicle traffic networks when pedestrian safety is considered in the system, as well as the efficacy of our traffic light control strategy for pedestrians and vehicles on risk reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.