Abstract

As satellite signals, e.g. GPS, are severely degraded indoors or not available at all, other methods are needed for indoor positioning. In this paper, we propose methods for combining information from inertial sensors, indoor map, and WLAN signals for pedestrian indoor navigation. We present results of field tests where complementary extended Kalman filter was used to fuse together WLAN signal strengths and signals of an inertial sensor unit including one gyro and three-axis accelerometer. A particle filter was used to combine the inertial data with map information. The results show that both the map information and WLAN signals can be used to improve the pedestrian dead reckoning estimate based on inertial sensors. The results with different combinations of the available sensor information are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.