Abstract

Applications on Location Based Services (LBSs) have driven the increasing demand for indoor localization technology. The conventional location fingerprinting based localization involves heavy time and labor cost for database construction, while the well‐known Simultaneous Localization and Mapping (SLAM) technique requires assistant motion sensors as well as complicated data fusion algorithms. To solve the above problems, a new pedestrian motion learning based indoor Wireless Local Area Network (WLAN) localization approach is proposed in this paper to achieve satisfactory LBS without the demand for location calibration or motion sensors. First of all, the concept of pedestrian motion learning is adopted to construct users’ motion paths in the target environment. Second, based on the timestamp relation of the collected Received Signal Strength (RSS) sequences, the RSS segments are constructed to obtain the signal clusters with the newly defined high‐dimensional linear distance. Third, the PageRank algorithm is performed to establish the hotspot mapping relations between the physical and signal spaces which are then used to localize the target. Finally, the experimental results show that the proposed approach can effectively estimate the target’s locations and analyze users’ motion preference in indoor environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.