Abstract

This paper describes a method for fitting predictive models that relate vehicle impact speeds to pedestrian injuries, in which results from a national sample are calibrated to reflect local injury statistics. Three methodological issues identified in the literature, outcome-based sampling, uncertainty regarding estimated impact speeds, and uncertainty quantification, are addressed by (i) implementing Bayesian inference using Markov Chain Monte Carlo sampling and (ii) applying multiple imputation to conditional maximum likelihood estimation. The methods are illustrated using crash data from the NHTSA Pedestrian Crash Data Study coupled with an exogenous sample of pedestrian crashes from Minnesota’s Twin Cities. The two approaches produced similar results and, given a reliable characterization of impact speed uncertainty, either approach can be applied in a jurisdiction having an exogenous sample of pedestrian crash severities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.