Abstract
In this paper, we propose a pedestrian detection algorithm based on both appearance and motion features to achieve high detection accuracy when applied to complex scenes. Here, a pedestrian's appearance is described by a histogram of oriented spatial gradients, and his/her motion is represented by another histogram of temporal gradients computed from successive frames. Since pedestrians typically exhibit not only their human shapes but also unique human movements generated by their arms and legs, the proposed algorithm is particularly powerful in discriminating a pedestrian from a cluttered situation, where some background regions may appear to have human shapes, but their motion differs from human movement. Unlike the algorithm based on a co-occurrence feature descriptor where significant generalization errors may arise owing to the lack of extensive training samples to cover feature variations, the proposed algorithm describes the shape and motion as unique features. These features enable us to train a pedestrian detector in the form of a spatio-temporal histogram of oriented gradients using the AdaBoost algorithm with a relatively small training dataset, while still achieving excellent detection performance. We have confirmed the effectiveness of the proposed algorithm through experiments on several public datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.